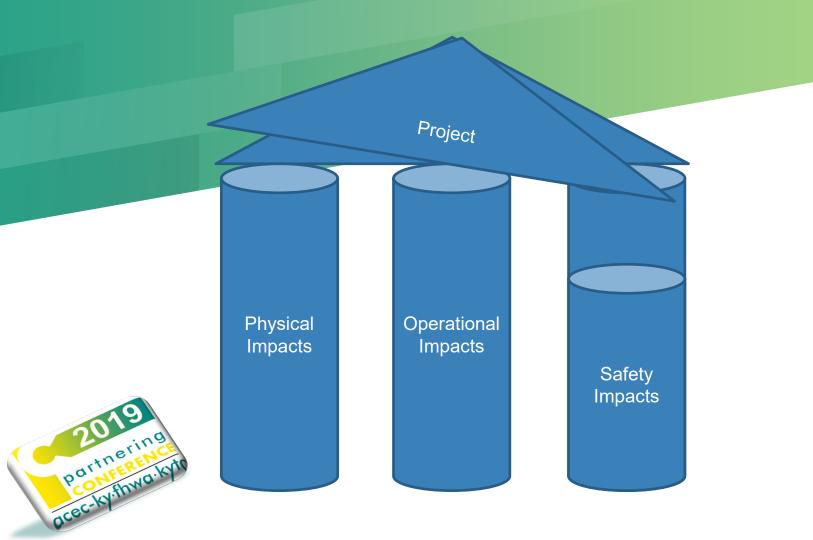
# DDSA Tools and Training


Nathan Ridgway, PE



# Why Data Driven Safety Analysis?

- A statistical based approach that aids and supports engineering judgment and decision making.
- Crashes can be quantified based on project decisions.





#### What are the Tools?

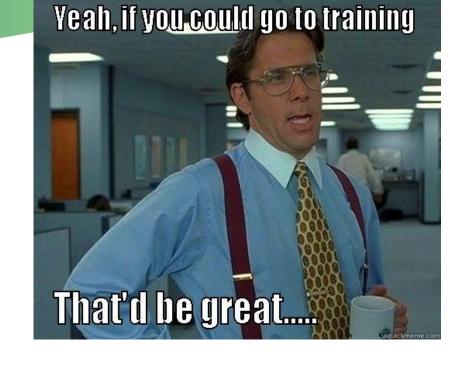
- Crash Data CDAT
- **Predictive Analysis** 
  - **HSM** spreadsheets
  - ISATe





- SPICE and CAP-X
- **Network Screening Tool**










# **Training**

- 3 Tiers
  - Beginning
  - Intermediate
  - Advanced





## **Beginning Tier**

- Suggested web based courses/webinars to allow the user to become familiar with the terms and calculations of the HSM
- NHI course offerings at zero cost





# **Beginning Tier**

#### NHI Courses

- Highway Safety Manual Online Overview (NHI 380106)
- Safety Data and Analysis Fundamental Training for Data Analysts (NHI 380122A)
- Safety Data and Analysis Fundamentals Training for Data Collectors/Stewards (NHI 380122B)
- Safety Data and Analysis Fundamentals Training for Project and Program Managers (NHI 380122C)
- Safety Data and Analysis Fundamentals Training for Senior Managers and Safety Advocate (NHI 380122D)

Partnering Porting Por

https://www.nhi.fhwa.dot.gov/course-search?tab=0

#### **Intermediate Tier**



- Predictive Methods
  - HSM spreadsheets
    - HSM Practioner's Guide for Geometric Design Features (NHI 380070
  - ISATe and IHSDM
    - Safety Analysis of Freeway Segments and Interchanges (NHI 380071)



#### **Advanced Tier**

KYTC developed courses to aid project managers and safety analyzers

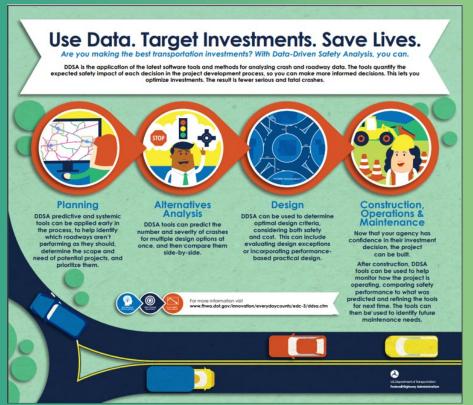
Interpretation and Presentation of Predictive Method Results

Limitations of Safety Analysis





# Next Steps


Implementation Timeline

Training Matrix





Prequalifications



# DDSA Web Resource

Jarrod Stanley

Research Coordinator - KYTC

jarrod Stanley@ky gov

#### https://business.kytc.ky.gov/work/DDSA/ Pages/default.aspx

Consultant Information



Data Driven Safety Analysis •

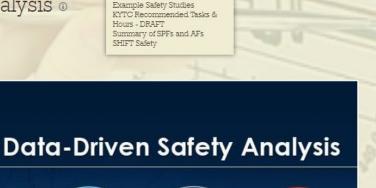
U.S. Department of Transportation

Federal Highway Administration

2

DDSA Contacts

Planning Highway Design


Training

Highway Safety Improvement Program

Traffic Operations

Training

Site Contents



Better Targeted

Investments

Resources

Training

Fewer Fatalities &

Search this site

0

Why DDSA? A statistical based approach that aids and supports engineering judgement How?

(I)-

More Informed

**Decision Making** 

#### Sections

| Home                                               | Crash Data                                       | DDSA Tools              | Training                                                            | Consultant<br>Information                  | Resources               |
|----------------------------------------------------|--------------------------------------------------|-------------------------|---------------------------------------------------------------------|--------------------------------------------|-------------------------|
| What is DDSA?<br>DDSA)                             | KSP (public site)                                | ISATe                   | WSDOT SR 509<br>PBPD Webinar                                        | Example Safety Studies KYTC                | Crash Costs             |
| Implementation<br>Plan & Schedule<br>(Coming Soon) | KY's Open Portal<br>Solution (Login<br>Required) | lution (Login Based Pr  |                                                                     | Recommended<br>Tasks & Hours -<br>DRAFT    | FDOT DDSA<br>Manual     |
|                                                    | Guide to KYTC<br>Collision Data                  | CAPX/SPICE              | Potential for<br>Crash Reduction<br>the NEW Critical<br>Rate Factor | Summary of<br>SPFs and AFs<br>SHIFT Safety | Iowa DOT DDSA<br>Manual |
|                                                    | HIVEi (KYTC<br>Only)                             | DDSA<br>Resources       | Observed, Predicted and Expected Crashes – Video                    |                                            | LADOTD DDSA<br>Manual   |
|                                                    |                                                  | Comparison of the Tools | The Predictive<br>Method - Video                                    |                                            | Acronyms and<br>Terms   |

# One Stop Business Portal <a href="https://onestop.ky.gov/Pages/default.aspx">https://onestop.ky.gov/Pages/default.aspx</a>



Plan MY BUSINESS Start MY BUSINESS Operate MY BUSINESS Expand MY BUSINESS

Move TO KENTUCKY



#### Welcome to the Kentucky Business One Stop Portal

From starting your business plan to registering your business with the Compressional Control of the Start St

Begin your registration

#### Please complete your Kentucky Online Gateway Profile

1 If you already have an existing Kentucky Online Gateway (KOG) Account, please click here to reset your password OR click on the Cancel button below to log into your account.

Please fill out the form below and click Sign Up when finished.

All fields with \* are required.

| * First Name                                                            | Middle Name  | * Last Name       | e |          |  |  |  |  |
|-------------------------------------------------------------------------|--------------|-------------------|---|----------|--|--|--|--|
| * E-Mail Address                                                        | * Veri       | fy E–Mail Address |   |          |  |  |  |  |
| * Password                                                              | * Veri       | fy Password       |   |          |  |  |  |  |
| Mobile Phone                                                            |              | age Preference    |   |          |  |  |  |  |
| Street Address 1                                                        |              | Street Address 2  |   |          |  |  |  |  |
| City                                                                    | State        | nuela.            | ¥ | Zip Code |  |  |  |  |
| Question                                                                | * Ansv       | ver               |   |          |  |  |  |  |
| In what city were you born? (Enter full name of city onlowed)  Question | (y) ▼ * Ansv | wer               |   |          |  |  |  |  |
| What was the name of your first pet?                                    | Ψ            |                   |   |          |  |  |  |  |

#### **After Account is created:**

- Visit DDSA Website
- Request Access
- Webmaster (Jarrod) will approve and assign a group
- Browse the site

# Kentucky-Specific SPF Spreadsheets

William Staats, PE



## Purpose

- Allow for easy application of the Kentuckyspecific SPFs
- Ensures uniform use of the SPFs across the state
- Assists in safety analysis and identifying high crash segments
- \*Spreadsheets are currently in draft form and are not fully operational



# **SPF Development**

- SPFs were developed for the SHIFT 2020 cycle
- 8 roadway types and 36 intersection types
- Calibrated to balance between accuracy and the amount of data needed



#### **Base Conditions**

- Base conditions are the common characteristics of the dataset used to calibrate an SPF
- Different for each roadway type
- Any segment differing from its SPF's base conditions needs an adjustment factor to account for the difference



## **Uniform Segments**

Segments must be uniform with respect to each SPFs base conditions

|   | Roadway Type              | Must be uniform v | vith respe | ct to:         |                |              |                         |       |
|---|---------------------------|-------------------|------------|----------------|----------------|--------------|-------------------------|-------|
|   | Rural Two Lane            | No Intersections  | AADT       | Lane width     | Shoulder width | Median width | Horizontal curve degree | Grade |
|   | Urban Two Lane            | No Intersections  | AADT       |                |                |              |                         |       |
|   | Rural Interstate/Parkway  | No Intersections  | AADT       |                |                |              |                         |       |
|   | Urban Interstate/Parkway  | No Intersections  | AADT       |                |                |              |                         |       |
|   | Rural Multilane Divided   | No Intersections  | AADT       | Shoulder Width |                |              |                         |       |
|   | Rural Multilane Undivided | No Intersections  | AADT       | Lane Width     |                |              |                         |       |
| _ | Urban Multilane Divided   | No Intersections  | AADT       | Median Width   |                |              |                         |       |
| 7 | Urban Multilane Undivided | No Intersections  | AADT       | Lane width     |                |              |                         |       |



## **Obtaining Crash Data**

- Create uniform segments table
- Import .csv into CDAT
- Export crash data



# Using the Spreadsheets

- Follow color-coded instructions on "Instruction" tab
- Each roadway type is a separate tab
- All data is summarized in the "Summary" tab



#### Instruction

|                           | Instructions:                  |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|---------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-------------------|------------------------------|-----------|---------------|---------|---------|--------------|---------|---------|-----------------|------|--------------|-------------|---|
|                           | 1. Follow the color of         | coded gui                                                                                                              | ide to identify the | data necessary fo   | r a user to inpu  | ıt.                          |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           | 2. All roadway segm            | nents mus                                                                                                              | st be uniform with  | respect to the ne   | cessary data el   | ements for each roadway t    | ype (as   | seen          |         |         |              |         |         |                 |      |              |             |   |
|                           | listed below). The n           | listed below). The necessary data elements for each roadway type are based on the base conditions for each SPF. Unifor |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           | segments should no             | ot include                                                                                                             | intersections.      |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Need Data Input           | 3. Find the tab corre          | esponding                                                                                                              | g to the roadway    | type for your data  | . If multiple roa | dway types are being asses   | ssed at o | once, data    |         |         |              |         |         |                 |      |              |             |   |
| Calculated for you        |                                |                                                                                                                        |                     |                     |                   | lumns. Each row represent:   |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           | roadway segment.               |                                                                                                                        |                     |                     | •                 |                              | _         |               |         |         |              |         |         |                 |      |              |             | _ |
| SPF Parameters            | 4. The SPF predicito           | ons, adjus                                                                                                             | tment factors, EB   | expected crashes    | and EEC will b    | e calculated automatically   | for each  | segment       |         |         |              |         |         |                 |      |              |             | _ |
|                           | entered.                       |                                                                                                                        |                     |                     |                   |                              |           | -             |         |         |              |         |         |                 |      |              |             |   |
|                           | 5. View the "Summa             | ary" tab t                                                                                                             | o see a summary     | of crash metrics fo | or all the unifor | m segmenets you entered.     | In the e  | event a       |         |         |              |         |         |                 |      |              |             |   |
|                           | project spans multip           | ple roadw                                                                                                              | ay types, the sun   | nmary tab will sho  | w a break dow     | n of the crash metrics by ro | adway t   | type.         |         |         |              |         |         |                 |      |              |             |   |
|                           | ] ' ' ' '                      | •                                                                                                                      |                     | •                   |                   | •                            | •         |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Dan danna Taran           | Barrat Ir a consider man costs | .l                                                                                                                     |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Roadway Type              | Must be uniform wit            | -                                                                                                                      |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Rural Two Lane            | No Intersections A             |                                                                                                                        | Lane width          | Shoulder width      | Median width      | Horizontal curve degree      | Grade     |               |         |         |              |         |         |                 |      |              |             |   |
| Urban Two Lane            | No Intersections A             | ADT                                                                                                                    |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Rural Interstate/Parkway  | No Intersections A             | ADT                                                                                                                    |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Urban Interstate/Parkway  | No Intersections A             | ADT                                                                                                                    |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Rural Multilane Divided   | No Intersections A             | ADT                                                                                                                    | Shoulder Width      |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Rural Multilane Undivided | No Intersections A             | ADT                                                                                                                    | Lane Width          |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Urban Multilane Divided   | No Intersections A             |                                                                                                                        | Median Width        |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Urban Multilane Undivided | No Intersections A             |                                                                                                                        | Lane width          |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| Orban Multilane Ondivided | No littersections A            | ADI                                                                                                                    | Lane width          |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             | _ |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             | _ |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             | _ |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
|                           |                                |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 |      |              |             |   |
| ← ► Instruction Si        | ımmary Rural Two               | Lane                                                                                                                   | Urban Two Lane      | Rural Intersta      | teParkway         | Urban InterstateParkway      | Rura      | l Multilane ( | Divided | Rural M | ultilane Und | livided | Urban M | ultilane Divide | d Ur | ban Multilai | ne Undivide | d |
|                           | 1                              |                                                                                                                        |                     |                     |                   |                              |           |               |         |         |              |         |         |                 | -    |              |             |   |

### **Rural Multilane Divided**

| D | RT_UNIQUE | BEGIN_MP | END_MP | AADT | Total Crashes | Shoulder Width | Length | SH_AF | SPF |   |         |         |         | Alpha | -5.337 |
|---|-----------|----------|--------|------|---------------|----------------|--------|-------|-----|---|---------|---------|---------|-------|--------|
|   |           |          |        |      |               |                | 0      | 1.18  | 0   | 0 | #DIV/0! | #DIV/0! | #DIV/0! | Beta  | 0.768  |
|   |           |          |        |      |               |                |        |       |     |   |         |         |         | Phi   | 1.951  |
|   |           |          |        |      |               |                |        |       |     |   |         |         |         |       |        |
|   |           |          |        |      |               |                |        |       |     |   |         |         |         |       |        |
|   |           |          |        |      |               |                |        |       |     |   |         |         |         |       |        |
|   |           |          |        |      |               |                |        |       |     |   |         |         |         |       |        |
|   |           |          |        |      |               |                |        |       |     |   |         |         |         |       |        |
|   |           |          |        |      |               |                |        |       |     |   |         |         |         |       |        |
|   |           |          |        |      |               |                |        |       |     |   |         |         |         |       |        |
|   |           |          |        |      |               |                |        |       |     |   |         |         |         |       |        |
|   |           |          |        |      |               |                |        |       |     |   |         |         |         |       |        |

# **Summary Table**

|                           | Total Observed Crashes | Total SPF Predicted | Total EB | Total EEC |
|---------------------------|------------------------|---------------------|----------|-----------|
| Rural Two Lane            | 0                      |                     |          | #DIV/0!   |
| Urban Two Lane            | 0                      |                     |          | #DIV/0!   |
| Rural Interstate/Parkway  | 0                      |                     |          | #DIV/0!   |
| Urban Interstate/Parkway  | 0                      |                     |          | #DIV/0!   |
| Rural Multilane Divided   | 0                      |                     |          | #DIV/0!   |
| Rural Multilane Undivided | 0                      |                     |          | #DIV/0!   |
| Urban Multilane Divided   | 0                      |                     | -        | #DIV/0!   |
| Urban Multilane Undivided | 0                      | 0                   | #DIV/0!  | #DIV/0!   |
| Ramps                     |                        |                     |          |           |
| Intersections             |                        |                     |          |           |
| Total                     | 0                      | 0                   | #DIV/0!  | #DIV/0!   |

# Application of CMFs

Jared Love, PE, PTOE, PMP













# Apply CMFs to Calculated SPF Values

- Review applicable SPF "base case" or typical features
- Determine how study site differs from "base case"
- Select CMFs for road type and atypical features from Part C
- Multiply SPF value by applicable CMFs



# **Base Conditions 2-Lane Rural Highways**

#### <u>Intersections</u>

- 90° angle (0° skew)
- No left turn lanes
- No right turn lanes
- No Lighting

#### Road segments

- 12-ft lane widths
- 6-ft shoulder widths
- Roadside Hazard Rating -- 3
- 5 driveways per mile
- Tangent, flat alignment
  - (No vertical grade)
- No centerline rumble strips
- No passing lanes
- No two-way left turn lanes
- No lighting
- No automated speed enforcement



# **Base Conditions Multilane Rural Arterials**

#### <u>Intersections</u>

- 90° angle (0° skew)
- No left turn lanes
- No right turn lanes
- No Lighting

#### Road segments

- 12-ft lane widths
- 8-ft shoulder widths
- 30-ft median
- No lighting
- No automated speed enforcement



# Base Conditions Urban and Suburban Arterials

#### <u>Intersections</u>

- No left turn lanes
- Permissive left-turn signal phasing
- No right turn lanes
- Right-turn on red permitted
- No Lighting
- No automated enforcement
- No bus stops, schools or alcohol sales establishments near

#### Road segments

- No on-street parking
- No roadside fixed objects
- 15-ft median
- No lighting
- No automated speed enforcement



# Crash Modification Factor (CMF)

- Expected Crashes = CMF x (base condition crashes)
- You can remember it as "M is for multiply"



### **CMF** Example

CMF = 0.90

% Reduction in Crashes

Expected crashes

- = CMF\* (base condition crashes)
- =0.9\* base condition crash frequency



### **Apply CMF ONLY if:**

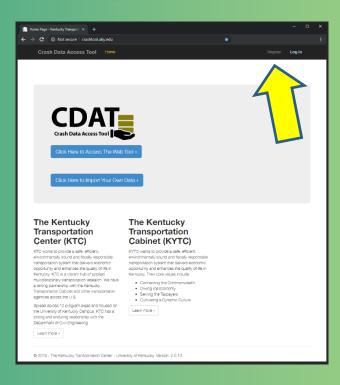
- Known base conditions
- Setting and road type
- AADT range
- Crash type and severity



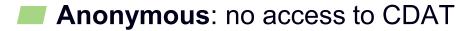
# Crash Data Access Analysis Tool

Eric Green, PE




## What is CDAT?






- Integrates crash with road data
- Includes advanced crash flags
- Includes HSM-based analysis
- Compare to similar roads/regions
- More than KYOPS
- Updated once a year (matches rates report)
- Maps... coming soon!

# http://crashtool.uky.edu



# Access



- Basic: A basic user has access to information currently available to the public.
- Advanced: An advanced user has a current and signed MOU on file with KYTC and has access to information as outlined in that agreement



# **Functionality**

- Query mode:
  - Country, route and milepoint range
- Import mode:
  - Upload your own file

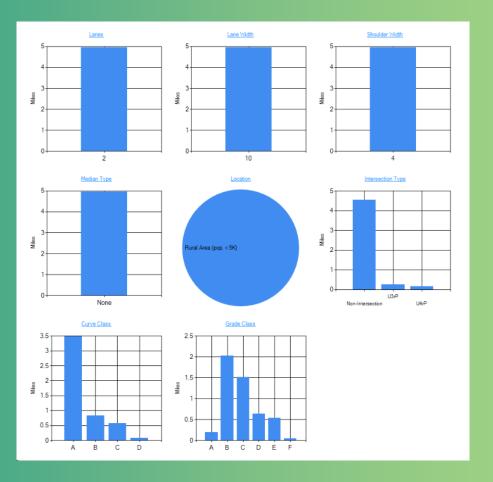




| lease define a county, rou    | ate and starting/ending milepoints.                             |
|-------------------------------|-----------------------------------------------------------------|
| County:                       |                                                                 |
|                               |                                                                 |
| ADAIR 🗸                       |                                                                 |
| imit to Prefix:               |                                                                 |
| ○ CR ○ CS ○ FD ● Clear Prefix | KY OLN OPR OPS OPV                                              |
| Route:                        |                                                                 |
| 01-KY-0055 -000 🗸             |                                                                 |
| Only Show Main Li             | ine Only Show Ramps O Show All                                  |
| Nore information on m         | ain line, ramps, and other section IDs can be found <u>here</u> |
| Milepoints:                   |                                                                 |
|                               | to 5                                                            |

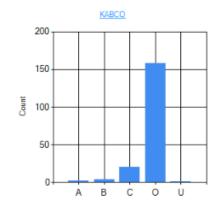


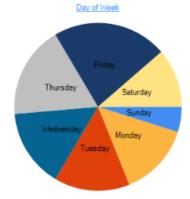
Please define the crash type.

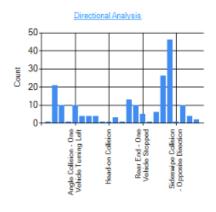

#### Severity:

- ✓ K (Killed)
- ☑ A (Suspected Serious Injury\*)
- ☑ B (Suspected Minor Injury\*)
- ☑ C (Possible Injury)
- ✓ O (Property Damage Only)
- ✓ U (unknown)
- ✓ H (hit and run where injury is not known)

\*New categories used starting in 2017


#### Include:


- ☐ Motorcycle
- Commercial Vehicle
- Lane Departure
- Run Off the Road
- ☐ Young Driver
- ☐ Mature Driver
- Pedestrian Involved
- ☐ Bicyclist Involved ☐ Distracted Driving
- Agressive Driving
- ☐ Impaired Driving
- Unrestrained
- ☐ Hit and Run
- Intersections and Non-Intersections Intersections only Non-intersections only
- Private property and Public Private property only Public only
- Parking Lot and Non-Parking Lot Parking lot only Non-Parking lot only




| OBJECTID | RT UNIQUE           | BEGIN MP   | END MP     | CO NAME | DISTRICT   | UrbanType                 | FC | AADT         | MedianType | LaneWidth   | LANES      | GRADECLS | CURVECLS | ShoulderWidth | Length     | IntsctClas |
|----------|---------------------|------------|------------|---------|------------|---------------------------|----|--------------|------------|-------------|------------|----------|----------|---------------|------------|------------|
| 5484     | 001-KY-0055<br>-000 | 0.00000000 | 0.01900000 | Adair   | 8.00000000 | Rural Area (pop. <<br>5K) | 5  | 704.00000000 | None       | 10.00000000 | 2.00000000 | E        | A        | 4.00000000    | 0.01900000 |            |
| 5485     | 001-KY-0055<br>-000 | 0.01900000 | 0.20900000 | Adair   | 8.00000000 | Rural Area (pop. <<br>5K) | 5  | 704.00000000 | None       | 10.00000000 | 2.00000000 | В        | A        | 4.00000000    | 0.19000000 |            |
| 5499     | 001-KY-0055<br>-000 | 0.20900000 | 0.27900000 | Adair   | 8.00000000 | Rural Area (pop. <<br>5K) | 5  | 704.00000000 | None       | 10.00000000 | 2.00000000 | В        | В        | 4.00000000    | 0.07000000 | ,          |
| 5497     | 001-KY-0055<br>-000 | 0.27900000 | 0.29400000 | Adair   | 8.00000000 | Rural Area (pop. <<br>5K) | 5  | 704.00000000 | None       | 10.00000000 | 2.00000000 | С        | В        | 4.00000000    | 0.01500000 |            |
| 5224     | 001-KY-0055<br>-000 | 0.29400000 | 0.31300000 | Adair   | 8.00000000 | Rural Area (pop. <<br>5K) | 5  | 704.00000000 | None       | 10.00000000 | 2.00000000 | С        | В        | 4.00000000    | 0.01900000 | U4rP       |
| 5225     | 001-KY-0055<br>-000 | 0.31300000 | 0.34000000 | Adair   | 8.00000000 | Rural Area (pop. <<br>5K) | 5  | 704.00000000 | None       | 10.00000000 | 2.00000000 | С        | В        | 4.00000000    | 0.02700000 | U4rP       |
| 5223     | 001-KY-0055<br>-000 | 0.34000000 | 0.35900000 | Adair   | 8.00000000 | Rural Area (pop. <<br>5K) | 5  | 704.00000000 | None       | 10.00000000 | 2.00000000 | С        | В        | 4.00000000    | 0.01900000 | U4rP       |
| 5496     | 001-KY-0055<br>-000 | 0.35900000 | 0.38300000 | Adair   | 8.00000000 | Rural Area (pop. <<br>5K) | 5  | 704.00000000 | None       | 10.00000000 | 2.00000000 | С        | В        | 4.00000000    | 0.02400000 |            |
| 5498     | 001-KY-0055<br>-000 | 0.38300000 | 0.40000000 | Adair   | 8.00000000 | Rural Area (pop. <<br>5K) | 5  | 704.00000000 | None       | 10.00000000 | 2.00000000 | В        | В        | 4.00000000    | 0.01700000 |            |
| 5226     | 001-KY-0055<br>-000 | 0.40000000 | 0.41900000 | Adair   | 8.00000000 | Rural Area (pop. <<br>5K) | 5  | 704.00000000 | None       | 10.00000000 | 2.00000000 | В        | В        | 4.00000000    | 0.01900000 | U3rP       |

## Crash Data:







## 185 crashes found

| <u>MP</u> | RT  | Unique        | KTC    | Longitude | Latitude |
|-----------|-----|---------------|--------|-----------|----------|
| 0.306     | 001 | -KY-005       | -000   | -85.30237 | 37.08729 |
| 0.989     | 001 | -KY-005       | -000   | -85.30219 | 37.09655 |
| 1.899     | 001 | -KY-005       | 5 -000 | -85.30308 | 37.10767 |
| 1.709     | 001 | -KY-005       | -000   | -85.30354 | 37.10509 |
| 4.269     | 001 | -KY-005       | -000   | -85.2543  | 37.02387 |
| 4.046     | 001 | -KY-005       | -000   | -85.25345 | 37.02074 |
| 1.458     | 001 | -KY-005       | -000   | -85.3054  | 37.10218 |
| 0.817     | 001 | -KY-005       | 5 -000 | -85.30315 | 37.09395 |
| 0.859     | 001 | -KY-005       | -000   | -85.30273 | 37.0945  |
| 0.813     | 001 | -KY-005       | 5 -000 | -85.30317 | 37.09389 |
| 1234      | 567 | 7 <u>8910</u> |        |           |          |

Download Data

## Show crash data on roads with these geometrics:

● 2 - Lanes

● 10 ft Lane Width

4 ft Shoulder Width

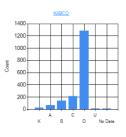
None

Non-Intersection ○ U3rP ○ U4rP

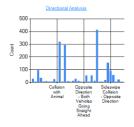
●A ○B ○C ○D

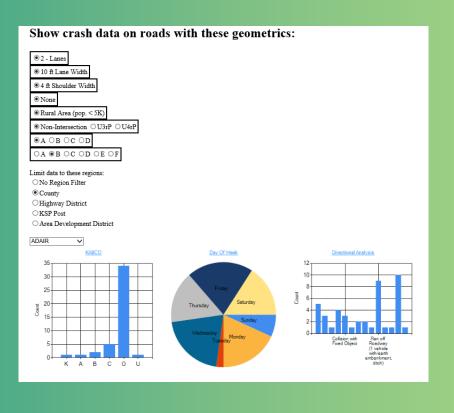
OA ®B OC OD OE OF

Limit data to these regions:


No Region Filter

O County

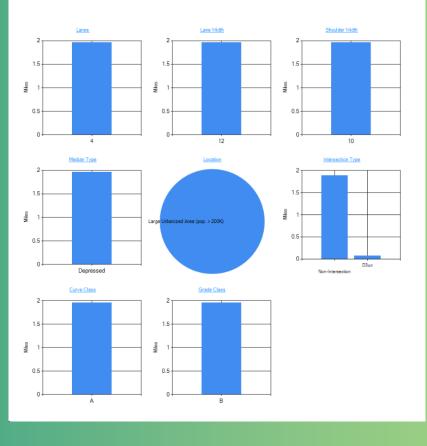

O Highway District


OKSP Post

O Area Development District












| lease select an SPF fo | or the segment (in | tersections | coming soon!) |                         |
|------------------------|--------------------|-------------|---------------|-------------------------|
| Rural Two-Lane         |                    |             |               |                         |
| OUrban Two-Lan         | e                  |             |               |                         |
| ORural Multi-Lar       | ne Divided         |             |               |                         |
| O Rural Multi-Lar      | ne Undivided       |             |               |                         |
| O Urban Multi-La       | ne Divided         |             |               |                         |
| O Urban Multi-La       | ne Undivided       |             |               |                         |
| ORural Interstate      | and Parkway        |             |               |                         |
| OUrban Interstate      | and Parkway        |             |               |                         |
| ONo SPF recomn         | nended             |             |               |                         |
|                        |                    |             |               |                         |
| Perform Advanced       | Analysis           |             |               |                         |
|                        | 105                |             |               |                         |
| Number of Crashes      |                    |             |               |                         |
| Theta:                 | 1.532              |             |               |                         |
| Model form: SPF =      | -^* Δ Δ D T ^\h*   | Tenath      |               |                         |
| ength:                 | 4 96               | Lengui      |               |                         |
| AADT:                  | 914.1              |             |               |                         |
| ADI.                   |                    |             |               |                         |
|                        | -4.492             |             |               |                         |
| )                      | 0.844              |             |               |                         |
| Results:               |                    |             |               |                         |
| Crash prediction at    | site               | 67.7        |               | crashes per time period |
| Excess Expected Co     |                    | 173.2       |               | crashes per time period |
| Confidance             | +/-                | 7.8         |               | crashes per time period |

### Roadway Data:





| lease select an SPF f                   | or the segment (in | tersections coming soon!) |                                                    |
|-----------------------------------------|--------------------|---------------------------|----------------------------------------------------|
| ORural Two-Lan                          | e                  |                           |                                                    |
| OUrban Two-Lar                          | ıe                 |                           |                                                    |
| ORural Multi-La                         | ne Divided         |                           |                                                    |
| ORural Multi-Lar                        | ne Undivided       |                           |                                                    |
| <ul> <li>Urban Multi-La</li> </ul>      | ne Divided         |                           |                                                    |
| O Urban Multi-La                        | ne Undivided       |                           |                                                    |
| ORural Interstate                       | and Parkway        |                           |                                                    |
| <ul> <li>Urban Interstate</li> </ul>    | and Parkway        |                           |                                                    |
| ○ No SPF recomm                         | nended             |                           |                                                    |
|                                         |                    |                           |                                                    |
| Perform Advanced                        | Analysis           |                           |                                                    |
| Number of Crashes                       | 73                 |                           |                                                    |
| heta:                                   | 0.814              |                           |                                                    |
|                                         |                    |                           |                                                    |
| Aodel form: SPF =<br>.ength:            | e^a*AADT^b         | *Length                   |                                                    |
| ADT.                                    | 63845.1            |                           |                                                    |
|                                         | -4.171             |                           |                                                    |
| '                                       | 0.761              |                           |                                                    |
|                                         |                    |                           |                                                    |
| Results:<br>Crash prediction at         | -ia-               | 228.8                     | T                                                  |
| rasn prediction at<br>Excess Expected C |                    | 74.1                      | crashes per time period<br>crashes per time period |
| onfidance                               | +/-                | 15.1                      | crashes per time period                            |
|                                         |                    |                           |                                                    |